The increasing importance of both deep neural networks (DNNs) and cloud services for training them means that bad actors have more incentive and opportunity to insert backdoors to alter the behavior of trained models. In this paper, we introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights using independent vector analysis (IVA) followed by a machine learning classifier. In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data, being applicable across domains, operating with a wide range of network architectures, not assuming the nature of the triggers used to change network behavior, and being highly scalable. We discuss the detection pipeline, and then demonstrate the results on two computer vision datasets regarding image classification and object detection. Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
translated by 谷歌翻译
由于对神经网络的运行推断的计算成本,因此通常需要在第三方的计算环境或硬件上部署推论步骤。如果第三方不完全信任,则需要混淆输入和输出的性质,以便第三方无法轻易确定正在执行哪些特定任务。事实证明,存在利用不受信任的政党的协议,但在实践中运行的计算要求太高了。相反,我们探索了一种不同的快速启发式安全策略,我们称之为连接主义符号伪造秘密。通过利用全息降低表示(HRR),我们创建了一个具有伪加密风格的防御的神经网络,从经验上表现出强大的攻击性,即使在不切实际地偏爱对手的威胁模型下也是如此。
translated by 谷歌翻译
强化学习(RL)代理商可以通过与环境进行交互来学习解决复杂的顺序决策任务。但是,样品效率仍然是一个重大挑战。在多目标RL领域中,需要代理以达到多个目标来解决复杂任务,提高采样效率可能尤其具有挑战性。另一方面,人类或其他生物代理商以更具战略方式学习此类任务,遵循随着难度水平的增加,以便逐步高效的学习进步。在这项工作中,我们提出了一种以自我监督方式使用动态距离功能(DDF)的自动目标生成方法。 DDF是一种函数,它预测马尔可夫决策过程(MDP)内的任何两个状态之间的动态距离。有了这个,我们在适当的难度水平下生成一个目标课程,以便在整个培训过程中有效地学习。我们在几个目标条件的机器人操纵和导航任务中评估这种方法,并在基线方法上显示出样本效率的改进,该方法仅使用随机目标采样。
translated by 谷歌翻译
全息减少的表示(HRR)是通过将每个向量与抽象概念相关联,并提供数学操作以操纵向量的方法来执行符号AI的方法,以便操纵向量,就像它们是经典的符号对象一样。这种方法在较旧的象征性AI工作和认知科学之外已经很少使用。我们的目标是重新审视这种方法,以了解它是否可行,以使混合神经象征性的方法能够学习作为深度学习架构的可差分量。由于数值不稳定性,HRRS今天在可分辨率的解决方案中无效,我们通过引入迫使向量存在于空间良好的点中的投影步骤来解决问题。这样做,我们将HRRS的概念检索效果提高超过100美元。使用多标签分类,我们演示了如何利用符号HRR属性来开发能够有效学习的输出层和损耗功能,并允许我们调查HRR神经象征性学习方法的一些优缺点。我们的代码可以在https://github.com/neuromorphiccomputationResearchProgram/learning-with-hotographicuredued-representations
translated by 谷歌翻译
Modeling lies at the core of both the financial and the insurance industry for a wide variety of tasks. The rise and development of machine learning and deep learning models have created many opportunities to improve our modeling toolbox. Breakthroughs in these fields often come with the requirement of large amounts of data. Such large datasets are often not publicly available in finance and insurance, mainly due to privacy and ethics concerns. This lack of data is currently one of the main hurdles in developing better models. One possible option to alleviating this issue is generative modeling. Generative models are capable of simulating fake but realistic-looking data, also referred to as synthetic data, that can be shared more freely. Generative Adversarial Networks (GANs) is such a model that increases our capacity to fit very high-dimensional distributions of data. While research on GANs is an active topic in fields like computer vision, they have found limited adoption within the human sciences, like economics and insurance. Reason for this is that in these fields, most questions are inherently about identification of causal effects, while to this day neural networks, which are at the center of the GAN framework, focus mostly on high-dimensional correlations. In this paper we study the causal preservation capabilities of GANs and whether the produced synthetic data can reliably be used to answer causal questions. This is done by performing causal analyses on the synthetic data, produced by a GAN, with increasingly more lenient assumptions. We consider the cross-sectional case, the time series case and the case with a complete structural model. It is shown that in the simple cross-sectional scenario where correlation equals causation the GAN preserves causality, but that challenges arise for more advanced analyses.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
Scientists and philosophers have debated whether humans can trust advanced artificial intelligence (AI) agents to respect humanity's best interests. Yet what about the reverse? Will advanced AI agents trust humans? Gauging an AI agent's trust in humans is challenging because--absent costs for dishonesty--such agents might respond falsely about their trust in humans. Here we present a method for incentivizing machine decisions without altering an AI agent's underlying algorithms or goal orientation. In two separate experiments, we then employ this method in hundreds of trust games between an AI agent (a Large Language Model (LLM) from OpenAI) and a human experimenter (author TJ). In our first experiment, we find that the AI agent decides to trust humans at higher rates when facing actual incentives than when making hypothetical decisions. Our second experiment replicates and extends these findings by automating game play and by homogenizing question wording. We again observe higher rates of trust when the AI agent faces real incentives. Across both experiments, the AI agent's trust decisions appear unrelated to the magnitude of stakes. Furthermore, to address the possibility that the AI agent's trust decisions reflect a preference for uncertainty, the experiments include two conditions that present the AI agent with a non-social decision task that provides the opportunity to choose a certain or uncertain option; in those conditions, the AI agent consistently chooses the certain option. Our experiments suggest that one of the most advanced AI language models to date alters its social behavior in response to incentives and displays behavior consistent with trust toward a human interlocutor when incentivized.
translated by 谷歌翻译
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. A parallel-autonomous system acts as a guardian that significantly enhances the robustness and safety of flight operations in challenging circumstances. Here, we propose an air-guardian concept that facilitates cooperation between an artificial pilot agent and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot agent and a control system based on perceived differences in their attention profile. The attention profiles are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm. The guardian agent is trained via reinforcement learning in a fixed-wing aircraft simulated environment. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. If the attention map of the pilot and the guardian do not align, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. We demonstrate the effectivness of our methods in simulated flight scenarios with a fixed-wing aircraft and on a real drone platform.
translated by 谷歌翻译
As demand for large corpora increases with the size of current state-of-the-art language models, using web data as the main part of the pre-training corpus for these models has become a ubiquitous practice. This, in turn, has introduced an important challenge for NLP practitioners, as they are now confronted with the task of developing highly optimized models and pipelines for pre-processing large quantities of textual data, which implies, effectively classifying and filtering multilingual, heterogeneous and noisy data, at web scale. One of the main components of this pre-processing step for the pre-training corpora of large language models, is the removal of adult and harmful content. In this paper we explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data. We first show how traditional methods in harmful content detection, that seemingly perform quite well in small and specialized datasets quickly break down when confronted with heterogeneous noisy web data. We then resort to using a perplexity based approach but with a twist: Instead of using a so-called "clean" corpus to train a small language model and then use perplexity so select the documents with low perplexity, i.e., the documents that resemble this so-called "clean" corpus the most. We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold. This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity and will also allow us to obtain higher precision than with the traditional classification methods for detecting adult and harmful content.
translated by 谷歌翻译
Quantization methods reduce the number of bits required to represent each parameter in a model, trading accuracy for smaller memory footprints and inference latencies. However, the final model size depends on both the number of parameters of the original model and the rate of compression. For example, a 30B 8-bit model and a 60B 4-bit model have the same number of bits but may have very different zero-shot accuracies. In this work, we study this trade-off by developing inference scaling laws of zero-shot performance in Large Language Models (LLMs) to determine the bit-precision and model size that maximizes zero-shot performance. We run more than 35,000 zero-shot experiments with 16-bit inputs and k-bit parameters to examine which quantization methods improve scaling for 3 to 8-bit precision at scales of 19M to 66B parameters across the LLM families BLOOM, OPT, NeoX/Pythia, and GPT-2. We find that it is challenging to improve the bit-level scaling trade-off, with the only improvements being the use of a small block size -- splitting the parameters into small independently quantized blocks -- and the quantization data type being used (e.g., Int vs Float). Overall, our findings show that 4-bit precision is almost universally optimal for total model bits and zero-shot accuracy.
translated by 谷歌翻译